微反應器中的混合對 Cu-ZnO 催化劑微結構形成過程的影響
1 實驗材料和方法
1.1 混合強度的測定
實驗采用 Villermaux-Dushman 反應體系 [14] 測量微反應器 [10] (內(nèi)部結構如圖 1 所示,通道截面為0.6 mm×0.6 mm 的矩形)在不同流速條件下的混合性能,具體方法見文獻[15-17]。實驗中通過測量初始濃度為 0.0900 mol·L?1H 3 BO 3 、0.0900 mol·L?1NaOH、0.0320 mol·L?1KI、0.0060 mol·L?1KIO 3 構成的混合溶液與 0.0225 mol·L?1H 2 SO 4 溶液反應后I ? 3 的吸光度(353 nm),得到離集值 X s 。
1.2 前體和氧化物的制備
實驗中共沉淀過程在微反應器 [10] 中進行:配制總濃度為 0.3 mol·L?1的 Cu(NO 3 ) 2 和 Zn(NO 3 ) 2 混合溶液(銅鋅摩爾比為 70:30)以及 0.3 mol·L?1的Na 2 CO 3 溶液,分別由平流泵打入預熱段,加熱至70℃后,進入微反應器,隨后經(jīng)過一段外徑為 3 mm的不銹鋼管路流入三口燒瓶中。
實驗中設定金屬鹽溶液的體積流率,通過調(diào)節(jié) Na 2 CO 3 溶液的體積使出口溶液的 pH 維持在 7 左右。反應得到的懸浮液在 80℃條件下陳化 2 h,再用去離子水洗滌 3 次,過濾后在 110℃條件下干燥16 h,得到前體(precursor,簡寫為 P)。前體在 350℃條件下焙燒 4 h,得到氧化物(oxide,簡寫為 O)。改變金屬鹽溶液的體積流率為 20、30、40、50ml·min?1,得到的前體和氧化物分別命名為 P-X 和O-X(X=20,30,40,50,與體積流率對應)。
1.3 前體和氧化物的表征
X 射線粉末衍射分析(XRD)采用帕納科公司的 X’Pert PRO 型 X 射線多晶衍射儀進行表征。光源為 CuK α 射線(λ=0.15406 nm),管電壓 50 kV,管電流 40 mA,掃描速率為 5 (°)·min?1,掃描范圍為 10°~80°。X 射線光電子能譜分析(XPS)采用美國Thermo Fisher ESCALAB 250 xi 型號儀器進行表征。光源為 AlK α 單色射線(hν=1486.6 eV)。高倍 電鏡線掃 分析(HRTEM/EDS)采用X-Max N 80T 型的高倍透射電鏡進行表征。
2 結果與討論
2.1 流速對混合強度的影響
不同流速條件下(以溶液 A、B 的總體積流率表示),Villermaux-Dushman 反應體系離集值 X s 的變化如圖 2 所示。圖中,隨著流速的增加,離集值X s 呈現(xiàn)持續(xù)減小的趨勢,顯示出微反應器混合性能的增加。這與文獻結果一致 [18] ,即流速增加,混合區(qū)中湍動增加,剪切作用增強,使兩股液體間接觸面積增大,擴散距離縮短,混合性能得到強化。
2.2 流速對前體組成的影響
不同流速條件下制得前體的X射線衍射譜圖如圖 3 所示,其中 P-20、P-30、P-40、P-50 分別表示金屬鹽溶液體積流率為 20、30、40、50 ml·min?1時制備的前體。將XRD結果與無機晶體庫中的PDF標準卡片(PDF#17-0743,PDF#36-1475)進行比對后 發(fā) 現(xiàn) , 4 個 樣 品 中 均 包 含 鋅 孔 雀 石(Cu 1–x Zn x ) 2 (OH) 2 CO 3 ( x<0.3 ) 和 綠 銅 鋅 礦(Cu 1–x Zn x ) 5 (OH) 6 (CO 3 ) 2 (x>0.5)兩種物質。
從圖中標注的出峰位置來看,綠銅鋅礦位于 13.05°、31.82°和 34.33°處的特征峰,隨著流速的增加,峰強越來越弱,表明前體中綠銅鋅礦所占的比例逐漸減小。同時,鋅孔雀石(20?1)和(21?1)晶面峰的位置(分別是 31.237°和 32.160°)也在逐漸向右偏移,這是因為 Zn 2+ 取代孔雀石中的 Cu 2+ 后,Jahn-Teller效應減弱,縮短了垂直于(20?1)、(21?1)晶面的軸的長度,使得其晶面距減小,晶面衍射峰向高角度偏移 [19] 。
文獻[20]中指出鋅孔雀石中 Zn 含量與其(20?1)晶面的晶面距呈線性關系,利用 Jade 軟件得到 4 個樣品中鋅孔雀石(20?1)晶面的晶面距分別為 0.2779、0.2769、0.2766、0.2760 nm,從而計算得到 P-20、P-30、P-40 和 P-50 的 Zn 含量分別為22.62%、25.49%、26.50%和 28.31%,可以看到,流速的增加有利于鋅孔雀石中 Zn 含量的增大。
Fig. 3 XRD patterns of precursors prepared at differentflow rates
一般認為,銅鋅催化劑的前體物相主要包括鋅孔雀石和綠銅鋅礦兩種。鋅孔雀石,尤其是 Zn 含量較高的鋅孔雀石,熱分解后形成的結構有利于催化性能的提高 [5,21] 。這是因為,鋅孔雀石中更高的Zn 含量有利于抑制 CuO 粒子的過度生長,可以形成更多的 Cu-Zn 界面,從而增強催化劑的活性。
然而人工合成的鋅孔雀石中 Zn 含量存在上限(約30%),若沉淀物中的 Zn 含量高于該值,則會導致綠銅鋅礦的形成,因此工業(yè)催化劑和許多研究中都控制 Cu/Zn 投料比在 7:3 左右。然而在文獻中,當Cu/Zn 投料比為 7:3,甚至 Zn 含量更低的情況下,往往也有明顯的綠銅鋅礦特征峰的出現(xiàn)。對照圖 3可以發(fā)現(xiàn),綠銅鋅礦的特征峰強度與流速有關,低流速下比較明顯,而高流速下則逐漸消失。這說明,陳化過程形成鋅孔雀石還是綠銅鋅礦并不取決于沉淀物中的平均 Cu/Zn 比,而是由沉淀物中局部的Cu/Zn 比所決定。在實際共沉淀反應過程中,混合速度小于反應速率,在微觀層面上就會形成 Cu 2+ 、Zn 2+ 的濃度分布,由于兩種離子在反應特性和擴散特性上均有不同,所以兩者的濃度分布也不一致。
這樣,在沉淀物中就會出現(xiàn)局部“Zn 占優(yōu)”和“Cu占優(yōu)”的區(qū)域,前者 Zn 含量超過了 30%,陳化過程易形成綠銅鋅礦,而后者則形成鋅孔雀石?;谏鲜鰝鬟f與反應過程相互影響的分析,認為混合過程決定了前體的晶體結構。當流速高、混合好時,沉淀物結構更為均勻,不容易形成綠銅鋅礦。而當流速低、混合差時,“Zn 占優(yōu)”的區(qū)域逐漸增多,綠銅鋅礦的量逐漸增大;同時,這也意味著“Cu占優(yōu)”區(qū)域中的 Zn 變得較低,從而影響鋅孔雀石中的 Zn 含量,這與前面計算得到的 Zn 含量變化規(guī)律一致。由于攪拌釜中的混合效果往往不如本文中使用的微混合器,這會導致綠銅鋅礦的出峰較為明顯,而鋅孔雀石中的 Zn 含量也較低 [19] ,這些文獻結果也是對上述結論的間接支持。前體中的結構變化也可以通過HRTEM/EDS線掃得到更為直觀的體現(xiàn)。圖 4(a)、(b)、(c)、(d)分別對應金屬鹽溶液體積流率為 20、30、40 和 50ml·min?1時制備的前體的 EDS 能譜圖,其中兩條曲線表示不同位置上 Cu、Zn 元素的含量變化。
圖 4(a)中,有接近 1/2 的區(qū)域(0~0.27 μm),兩線是幾乎重合在一起的,表明這些位置上 Cu/Zn 比約為 1:1,這與綠銅鋅礦的組成一致;而剩下的區(qū)域中,兩線雖然強度不同,但變化趨勢基本一致,Cu/Zn比的平均值為 2.15:1,可能為 Zn 含量較高的鋅孔雀石。圖 4(b)、(c)中,兩線重合的區(qū)域逐漸減小,表明綠銅鋅礦所占的比例越來越低。圖 4(d)中,沒有出現(xiàn)兩線重合的區(qū)域,說明在 Cu/Zn投料比為 7:3 的條件下,流速的增加抑制了綠銅鋅礦的出現(xiàn)。
為了定量描述 Cu-Zn 分布的均勻性,對原始數(shù)據(jù)進行處理,計算得到 Pearson 相關系數(shù),系數(shù)越大說明前體中 Cu、Zn 含量的變化趨勢越相近,即不同位置上 Cu/Zn 比值差異更小,Cu-Zn 分布越均勻。P-20、P-30、P-40 和 P-50 4個樣品的 Pearson 相關系數(shù)分別為 0.766、0.835、0.882 和 0.962,表明流速越大,Cu-Zn 分布的均勻性越好。前體的結構是通過陳化過程形成的,結構的不同在陳化過程中應該也有所反映。
圖 5 表示沉淀物在陳化過程中 pH 的變化過程,由圖可知,4 條曲線的變化趨勢基本一致,均呈現(xiàn)先增大,后減小到達突變點,再急劇上升,而后逐漸平穩(wěn)的趨勢,而且隨著流速的增加,突變點出現(xiàn)的時間越來越晚。文獻[20,22]指出,初始沉淀物在陳化過程中,以 pH的最小突變點為界,會經(jīng)歷一個由無定形態(tài)到晶體態(tài)的階段。所以根據(jù)前文的結論,猜測突變點出現(xiàn)時間的變化是由于不同流速下,初始沉淀物中Cu-Zn 分布的均勻性存在差異,從而導致結晶過程中晶核的生成速率不同。流速越小,Cu-Zn 分布的均勻性越差,陳化過程中不同位置處的濃度梯度越大,所以晶核越容易生成,突變點出現(xiàn)的時間也就越早。但由于結晶的過程非常復雜,究竟是何種因素影響著突變點出現(xiàn)的時間,需要以后進一步的論證。
Fig. 5 Influence of flow rate on pH minimum in aging process
2.3 流速對氧化物結構的影響
前體在 350℃條件下焙燒 4 h,得到氧化物,其X 射線衍射圖如圖 6 所示。不同流速下 4 個樣品的出峰位置和峰形非常相似,都歸屬于 CuO、ZnO 的衍射峰。其中,CuO(111)晶面的衍射峰(2θ=38.64°)的峰強較大,且不受其他峰的干擾,能夠用于估算CuO晶粒的平均粒徑。根據(jù)半高寬和Scherrer公式 [23]計算得到 O-20、O-30、O-40、O-50 樣品中 CuO 晶粒的平均粒徑分別為 8.1、7.8、7.4、6.6 nm,呈現(xiàn)出隨流速增加而逐漸減小的趨勢。文獻[21]指出,在焙燒過程中前體會分解為氧化物,但是 CuO 與ZnO 在熱力學上不相溶,所以兩種物質不是變?yōu)榛烊垠w,而是離析形成單純的 CuO、ZnO 晶粒。
同時,ZnO 的物理阻隔作用會抑制 CuO 晶粒的長大,鋅孔雀石中 Zn 含量越高,阻隔效果越好,導致 CuO 晶粒的平均粒徑越小。這也與前文的結論相一致,隨著流速的增加,混合強度增大,Cu-Zn 分布更為均勻,前體中鋅孔雀石的比例上升,且其中的 Zn 含量增加,從而使得焙燒后的 CuO 晶粒越小。
Fig. 6 XRD patterns of oxides prepared at different flow rates
XPS 表征從另一角度為上述結論提供了支持,如圖 7 所示。圖 7(a)中 932.5~935.0 eV 處的出峰對應于 Cu 2p 3/2 的光電子峰,940.0~945.0 eV 處是其衛(wèi)星伴峰,表明氧化物中的 Cu 相以 Cu 2+ 的形式存在 [24] 。通過擬合得到4組樣品中Cu元素的2p 3/2結合能分別為 933.8、934.1、934.2、934.3 eV,均大于標準的 CuO 中 Cu 2+ 的結合能(933.6 eV)。文獻[25]指出,這是由于氧化物中 Cu 2+ 的周圍環(huán)境發(fā)生了改變,周邊部分 Cu 2+ 變?yōu)榱?Zn 2+ ,由于 Zn 2+的電負性又大于 Cu 2+ ,使得 Cu 2+ 的最外層電子向Zn 2+ 偏移,電子云密度減小,使得結合能增大 [26-28] 。圖 7(a)中,流速越大的樣品,其 Cu 的 2p 3/2 峰偏移越大,表明樣品中 Cu 2+ 周圍的 Zn 2+ 較多,這可以佐證 CuO 粒子較小,CuO 和 ZnO 的相互分散性較好。
圖 7(b)的 526.0~536.0 eV 區(qū)間對應的是 O 1s的光譜范圍。從圖中來看,529.0 和 531.0 eV 附近均有峰出現(xiàn),表明氧化物中存在兩種類型的氧。文獻[29]指出,結合能為 529.5 eV 的峰是指 CuO 和ZnO 中的晶格氧,而結合能為 531.6 eV 的峰則為前體在焙燒過程中殘留的高溫碳酸鹽(HT-CO 32?)中的氧。
這是因為,前體鋅孔雀石在焙燒過程中會經(jīng)歷兩個階段 [13] ,在低溫階段(低于 350℃),鋅孔雀石分解為氧化物,釋放出 CO 2 和 H 2 O,并在CuO-ZnO 界面間形成 HT-CO 32?;在高溫階段(高于380℃),這些 HT-CO 32?會繼續(xù)分解,釋放出 CO 2 。由于低溫階段形成的這些 HT-CO 32?被認為有利于催化過程,所以本文實驗中選擇焙燒溫度為 350℃,此時這些 HT-CO 32?還未分解,仍保留在產(chǎn)物中。
鑒于這些 HT-CO 32?形成于 CuO-ZnO 界面中 [30] ,其數(shù)量取決于 CuO-ZnO 界面的多少,因此,其對應的531.6 eV 峰的面積也反映了 CuO-ZnO 界面數(shù)量。為了比較兩種氧所占的比例,對 4 條曲線在 529.5 和
531.6 eV 兩個位置進行雙峰擬合[圖 7(b)]。根據(jù)擬合的面積之比計算得到 O-20、O-30、O-40、O-50 樣品中 HT-CO 32?中的氧分別占氧總數(shù)的 68.2%、69.0%、72.4%和 74.2%,表明隨著流速的增大,前體焙燒后形成的 CuO-ZnO 界面數(shù)不斷增大,CuO、ZnO 粒子的分散性更好。
為了更為清楚地表現(xiàn)混合強度對于前體組成和氧化物結構的影響,將前文的數(shù)據(jù)進行歸類整理,如圖 8 所示。圖中左邊的坐標軸是前體的特性,右邊是氧化物的特性,橫坐標離集值由大到小排列,對應于流速由小到大的變化。從圖中來看,隨著離集值的減小,即混合變快,前體 Cu-Zn 分布更為均勻,鋅孔雀石中的 Zn 含量上升接近于極限值;與之對應,氧化物結構的分析表明,混合加強,Cu 2+周圍的 Zn 2+ 增多,CuO-ZnO 間的界面數(shù)增加,CuO晶粒粒徑減小。
這些參數(shù)單調(diào)的變化過程以及結構變化內(nèi)在的一致性表明,沉淀過程中混合強度對催化劑的影響,是通過 Cu-Zn 分布這一因素作用于陳化、焙燒、還原等后續(xù)過程,微妙地改變了中間產(chǎn)物結構和組成,最終影響了催化劑的結構和性能。文獻中提及的加料位置、攪拌速率、反應器尺寸等非常規(guī)參數(shù)對催化劑的影響,正是混合作用于沉淀反應過程后留下的印跡,也是對上述結論的一個很好支持。
3 結 論
理論分析和實驗研究表明,沉淀過程中混合強度的變化通過 Cu-Zn 分布,影響了后續(xù)過程,改變了前體和氧化物的微結構。
(1)隨著微反應器中流速的增加,混合強度增大,前體的 EDS 表明,其 Cu-Zn 分布變得更為均勻,接近于原料配比 7:3。
(2)前體的 XRD 顯示,混合強度越大,綠銅鋅礦的比例越低,鋅孔雀石中的 Zn 含量越高。
(3)氧化物的 XPS、XRD 分析表明,隨著混合強度增加,Cu 2+ 周圍的 Zn 2+ 增多,CuO-ZnO 間的界面數(shù)增加,CuO 的晶粒粒徑減小。
DOI:10.11949/j.issn.0438-1157.20170976
凌晨 蔣新,汪志勇 ,秦湘飛 ,盧建剛
(轉載僅供參考學習及傳遞有用信息,版權歸原作者所有,如侵犯權益,請聯(lián)系刪除)